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Abstract Some important characteristics of the atmosphere during an ad abatic process are 1nvesiigated, which include the invari-
ability of atmospheric entropy range and lczai surface potential temperature, vhe conzcivation of the atmospheric mass intervened between
any isentropic surface and the ground, and the isenirevic surface intetsecting with the ground. The analysis shows that the atmospheric
reference state (AKS) for investigaiion on available putential energy (APE) should be defined objectively as the state which could be ap-
proached from the existing etmosphece by adiabatic adjustment, and be related to initial atmospheric state before adjustment. For the initial
atmosphere state at any time, its corresponding ARS is different from the one at another time. Based on the above-mentioned conclusions,
the reference state proposed by Lorenz cannot be obtained physically, so a new conception, the conditional minimum total potential ener-

gy, is put forward in order to objectively investigate atmospheric APE.
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The studies on available potential energy (APE)
always play an important role in atmospheric energet-
ics. The terminology of APE was first introduced for
the general circulation by Margulesm, and later rede-
fined by Lorenzl**!. Furthermore, approximate and
exact formulas for calculating APE and its generation
were promoted, but those derivations are traditionally
based on the assumptions that hydrostatic balance
prevails, the atmosphere is stably stratified every-
where, the latent energy does not contribute to the
internal energy, and surface topography can be ig-
nored. There have been many approximations devel-
oped for handling those assumptions. For example,
Dutton and Johnson derived a “more exact” equation
by eliminating the assumption of hydrostatic bal-

ance ), and Lorenz developed moist available energy

[5]

by considering the vapor process™’, and Taylor took

surface topography into account'®. Lorenz’s APE
concept has also been extended to study the variation
of APE in a limited region during the process of for-

(7101 In recent years, the theory of

[11—13]

mation of storms
APE has new development in many aspects
and has also been applied widely to the studies of at-

mospheric and oceanic energetics[M_lS].

In the work on theoretical derivation and calcula-
tion of APE, to define a suitable atmospheric refer-
ence state (ARS) by redistributing atmospheric mass
under thermodynamically reversible adiabatic process
is of importance. In Lorenz’s first ARS without to-
pography, the atmosphere is barotropic, horizontal,
stably stratified, and in minimum TPE!?%3) Fur-
ther researches on ARS have been done, such as the
case with topography!®), etc. Actually, such distri-
butions of ARS have been directly designed physical-
ly, whereas some characteristics of atmosphere on
isentropic surfaces (ISs) under adiabatic condition
have not yet been mathematically investigated. More-
over, how ARS can be obtained from an existing at-
mospheric state in terms of adiabatic adjustment, and
whether ARS designed physically can be approached,
have not been proved mathematically. Evidently,
solving these essential problems are very important for
the comprehension of ARS and APE, which will be
examined in the present paper.

1 Variation of local surface potential tem-
perature during an adiabatic process

APE is defined by Lorenz as the difference be-
tween the total potential energy (TPE) of an existing
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atmospheric state and some suitably defined reference
statel >3], Usually the reference state represents the
minimum total potential energy (MTPE), which can
be attained by redistributing atmospheric mass under
thermodynamically reversible adiabatic condition. Ac-
cording to Lerenz’ s definition of ARS, the atmo-
sphere is barotropic, horizontal, stably stratified, and
in the state of MTPE. If there is no surlace topogra-
phy, the local surface potential temperature of the
ARS is homogeneous and just identical to the mini-
mum of potential temperature before adiabatic adjust-
ment. Taylor put forward two particular ARSs swith
"] QOne has the mini-
mum entropy due tc taking surface topography into

surface topography considered

ARS directly, and the other has uniform surface pres-
sure, undulate isentropic surfaces with topography,
and the minimum enthalpy. We can see that for dif-
ferent purposes, the definition of ARS can be chosen
arbitrarily. Therefore, it is necessary to examine
whether the assumed ARS can be approached really in
an existing atmospheric state by adiabatic adjust-
ment. So far rigorous derivations have not been seen
yet.

We first give boundary conditions in spherical
isentropic coordinate (A, ¢, 6, ) (where A, ¢ indi-
cate geographical longitude and latitude, respective-
ly), 2€[0,2x], ¢ €[ —x/2,n/21, @ is potential

temperature and ¢ the time) as follows1%:207,

Upper boundary: when ¢ = 0= const,

0 = 0; (1)
lower boundary: when 0=04(2, ¢, t),
. o0 o o0 vg OF :
g -~ Zs, % Ps  Us s, (2)
5 ot a O¢
where @1, g are potential temperature at the top of

acosp OA

atmosphere and on the surface of the earth, respec-
tively. ug, wvg are zonal and meridional components
of wind at the surface, respectively, and a is mean
radius of the earth.

As we have known, under adiabatic condition,
the potential temperature of air parcel remains con-

stant, viz. d? = 0. Since vertical ¢ velocity 6= de/
dt =0, ISs are substantial surfaces. During the pro-
cess of adiabatic adjustment, substantial surfaces can
neither vanish nor be created, and there is no motion
which can pass through 1Ss. So we obtain

Characteristic 1. During an adiabatic process,
the range of atmospheric entropy or potential temper-

ature 1s invariant.

This characteristic can be easily documented.
Given that the range of atmospheric potential temper-
ature is originally expressed as [ 8, (0), €. (0)]
and written as [ @, (2), O ()] at any time z. If
Omin(2)F003n(0), 010 (£) F 0105 (0), there will ex-
ist motion passed through isentropic surface during
the process of adiabatic adjustment, which is evident-

ly contradictory to the above-mentioned.

Jnder adiakatic condition, lower boundary con-
dition {2) can be written as g = 0. If there is no
boundary flow!™® (namely V,5 =0, corresponding to
viscous lower boundary condition), or in more com-
mon sense, there is no entropy advection on the sur-
face (V,5°V85=0), we can obtain that local change
of fgis zero. So it can be obtained that

Characteristic 2. During an adiabatic process, if
there is no flow across the boundary, or there is no
entropy advection on the surface, the surface poten-
tial temperature will locally remain invariable.

This implies that local potential temperature on
the surface always keeps its original value in the exist-
ing atmosphere. Under the condition of no boundary
flow and no surface entropy advection, local surface
potential temperature does not vary with the process
of atmospheric adiabatic adjustment.

Based on Characteristics 1 and 2, it is easy to
obtain two simple corollaries as follows:

Corollary 1. During an adiabatic process, if
there is no boundary flow, or there is no entropy ad-
vection on the surface, the range of atmospheric en-
tropy or potential temperature in any vertical air col-
umn will be constant.

Corollary 2. During an adiabatic process, if
there is no boundary flow, or there is no entropy ad-
vection on the surface, the position of intersection
lines between isentropic surfaces and the ground will
never change.

It is clear that the fore-mentioned derivations can
be reasonable with or without topography. This
shows that during the process of adiabatic adjust-
ment, the potential temperature at any place on the
surface remains invariable from the existing atmo-
sphere to its ARS. Therefore, after adjustment, the
ISs intersected with ground are not always superpos-
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able with iso-geopotential surfaces, which indicates
that the previous definitions of ARS can be unobjec-

tive.

In addition, because atmospheric state is diabati-
cally changing at every time, surface potential tem-
perature varies with time, which makes the local sur-
face potential temperature after adiabatic adjustment
different at every time. This implies that ARS should
be different with respect to the existing atmosphere
state at different time. In the following discussion,
we can see that the invariability of local surface poten-
tial temperature is quite important for the ztrrospheric
adiabatic process due to the nass ccaservaticn restrie-

tion.

2  Atmospheric mass conservation on isen-
tropic surfaces during an adiabatic process

Based on the invariability of local surface poten-
tial temperature under adiabatic condition, now some
characteristics of the atmosphere on the ISs during
the process of adiabatic adjustment will be further dis-
cussed. The atmospheric mass conservation is a basic
law as we know. For the characteristics of mass con-
servation, the previous work focused on the case that
ISs do not intersect with ground[2_4]. But the case
that ISs intersect with ground, which is quite essen-
tial to understanding the features of ISs, has not been

documented clearly.

In the spherical isentropic coordinate, the mass
continuity equation may be expressed as;

S]]

“ o0
1 ,( : Qﬁ) _

- acosga[ago Y g a0 0,

(3)

where p is pressure, « and v are zonal and meridional
components of wind, respectively. Here, the pressure

vCosQ %g) ]5

tendency on the top of atmosphere is ignored for con-
venience, namely o /3t =0 201,

Considering the general case that any isentropic
surface 6, intersects with ground, let o, denote the
overground section of the isentropic surface ¢;(name-
ly, if (A, go) Coi, 01295(/\, @)), and let 55 denote
the ground section of the isentropic surface €; (name-
ly, if (X, @) € oy5, 0;<<05(A, ¢)), and let I" denote
a collection of intersection lines between isentropic
surface ¢, and ground (namely the boundary I' =

61(1o15). We can integrate Eq. (3) from the closed

curved surface o5 = o7 U 015 to the atmospheric top
with the upper boundary condition, hence it follows
that

1, 2151 0o +ﬂf "2(22)

(2]

Jjjg acosgp 8/1 “ o0

J

VoS @ 5€) -Ud@da
+f'

918
+ [a% VCosQ %g) :L}d@do'

_ (T2 #J ; (QIZJ _
J 61(a0 o~ [Jbs[ 5] do = 0.4
%1 I1s 8

in which do = a? cos @dAde is the integral element
in horizontal direction. Since

op __8&_(@2) A
ot o o8 gsaz’

VL 9P
od

)

f el

with the aid of atmospheric upper boundary condi-
tion, the first two terms of Eq. (4) can be rewritten

j” (at)d6d6+ﬂj 80(5;2) dfde
:_ﬂ( ) H(az)e
ﬂld +H(a@) EZS“ (5)

S

Thus, the 1ntegral of pressure tendency on the curved
surface o is obtained. For any variable A, there ex-

1stsﬂAda = JA@ do + J Agdo , in which Ag is

%1s
the value of varlable A on the isentropic surface &4,

and A g the value of A on the ground.

For the fourth term of Eq. (4), with the law of
taking derivative of variable-limit integral we can ob-

tain
SRR
acoso Lo ot =
acose LoA ) 6, ACOSQ
N az) __us ais(@zz)
[a/\ “ o0 ] acosg OA\ of (6)

Op g
1 ['a—f VCOSP sz(?:' = f r_1
acosg 99 o0 ) g, acosQ
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(2%l 228 o

o0 a ¢\ ol
Substituting (5)—(7) into Eq. (4), we obtain

e [12), B0

e[l al e s ]

G

0
ol op

+ [— J VCOSP d@)} do
aSD ﬂw 80 0}

ﬂ acos@ ER

Tl 2], o [ 2

1L 18
in which, when (X, ¢)€ o5, 0w =6;; when (A, @)
Eo'ls, 6W 65

(2), we can turther obtain
A
ﬂ Srde == [Janl 55), e (8)

For an atmospheric adiabatic process, the right-hand
side of Eq. (8) is equal to zero, thus

H Ly = 0. (9)

In Eq. (9), whether the order between integral and
differential operators can be exchanged will entirely
depend on the fact whether the boundary I' = 6,1 6,5

BLFS

vs s [ 2]

a a¢/\00/gs

de = 0,
8

With the lower boundary condition

varies with time. As Corollary 2 has shown, when
there is no surface entropy advection, the positions of
the intersection lines (namely the boundary I') be-
tween ISs and ground will remain invariable. At this
moment, we can obtain the characteristics of atmo-

spheric mass conservation over a closed curved surface

oo by Eq. (9):
2] ta

where g is the acceleration of gravity. In particular,

=0, (10)

if 615 1s null set @, then the isentropic surface has no
oa.- Eq. (10) is
still proper. On the other hand, if 5, is null set @,
6s5=o0g, and Eq. (10) represents the conservation of

intersection with ground, and ¢, =

the whole atmospheric mass. Thus it follows that

Characteristic 3. During an adiabatic process,
atmospheric mass over the isentropic surfaces which
do not intersect with ground will maintain conserva-
tion; when isentropic surfaces intersect with ground,
under the condition of no surface entropy advection,

the atmospheric mass over a closed curved surface o

can also maintain conservation.
Therefore, it can be seen that:

Corollary 3. During an adiabatic process, if
there is no surface entropy advection, (i) the atmo-
spheric mass between any two continuous isentropic
surfaces will maintain conservation; (i) the atmo-
spheric mass between 2ny isentropic surface and

ground will maiatur conservation.

As the above derivations have shown, for the
case that there exists surface entropy advection,
which means surface potential temperature varies
with time, Eq. (10) cannot be obtained from (9).
Hence, the mass between any IS and ground can not
maintain conservation if IS intersects with ground.
Controlled by the law of mass conservation, either no
surface entropy advection or the invariability of local
surface potential temperature is an essential physical
restriction for the adiabatic process in the atmo-
sphere.

3 Conditional minimum total potential ener-
gy

According to Characteristic 3, the atmospheric
mass enclosed with [Ss and ground maintains conser-
vation, but its distribution may change. So there ex-
ists a minimum total potential energy (MTPE). Fur-
thermore, for the initial atmospheric state at any
time, its corresponding ARS is different from the one
at another time. Thus, such a MTPE should be con-
ditional and depends on the initial distribution of at-
mospheric state at different time, which is called the
minimum  total  potential
(CMTPE) here. During an adiabatic process, not on-

ly the potential temperature of air parcel is invariable,

conditional energy

but also the mass maintains conservation. Restricted
by the law of mass conservation, the positions of in-
tersection lines between [Ss and ground are also fixed
and unchangeable with time. Hence, in Lorenz’ s
definition, the ideal ARS with horizontal ISs may be
never approached by adiabatic adjustment, and its
corresponding TPE is just a lower limit of TPE a-
mong different ARSs, which may be called the abso-
lute MTPE.

In the expression of Lorenz’s APE®>3) ] the in-
tegrand is the difference between TPE and MTPE in
unit air column. In order to guarantee consistent isen-
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tropic surface, which means vertical integral limits at
any column keep the same during the process of adia-
batic adjustment, Lorenz has made an extension
(named Lorenz extension here): when 8 <84(A, @),
p(A,¢,0)=pg(A, @). Thus, the pressure of every
spot under ground is substituted by corresponding
surface pressure, which makes all of ISs closed. As
we know, the ISs intersected with ground cannot
reach horizontal states by adiabatic adjustment under
the restriction of mass conservation. So Lorenz exten-
sion is almost impossible to be applied physically, al-
though it is mathematically feasible. Actually this ex-
tension is unnecessary, because loca! surface potent al
temperature has invariaoility under adiabatic ccndi-
tion. So any ARS, vwhich cannor be approached by a-
diabatic adjustment, is not objective.

On the other hand, any atmospheric state with
different distribution of surface potential temperature
should have its corresponding ARS approached by a-
diabatic adjustment. Because the positions of intersec-
tion lines between ISs and ground are fixed, theoreti-
cally the ARS after adjustment exists uniquely. If the
MTPE is regarded as a criterion, the APE can be de-
termined in terms of the difference between the TPE
of existing atmosphere and the variational minimum
of TPE under the restriction of boundary condition
with fixed local potential temperature. This will be
meaningful and is worth further studies.
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